CP-1 and IFNc, two important factors for macrophage function. JNK1 was also implicated in the Relebactam biological activity production of antimicrobial peptides by epithelial cells and in the lung. These data suggest two potential mechanisms by which JNK1 may regulate host defense. In viral pneumonia, JNK1 had a somewhat paradoxical role, as JNK1 2/2 mice had lower viral burden but worsened morbidity and lung histopathology. The mechanism for this did not appear to involve altered mucin gene induction based on the lack of impact on Clca3 mRNA, T cell recruitment, or type I interferon induction. 8673721 Finally, JNK1 impacted IL-17A signaling in a similar manner to its effects on gram-negative bacterial pneumonia; decreased chemokine and antimicrobial peptide production. These data suggest that IL-17A requires JNK1 signaling which would suggest that JNK1 is required in a number of disease pathologies. The impact of JNK1 in host 16325804 defense against bacterial pathogens is largely unclear. Little is known about the impact of JNK1 deletion or inhibition in vivo. Pseudomonas aeruginosa induces JNK1 dependent apoptosis of cells via its exotoxin S, E. coli mediated induction of cytokines in HeLa cells was shown to be decreased by JNK1 and Host Defense a JNK inhibitor, and LPS mediated increases of IL-23 was JNK1 dependent. These data support the findings that JNK1 may be important in host defense against gram-negative bacteria. Our data indicate that JNK1 deletion has similar effects on E. coli and IL-17A induced cytokine production. Specifically, IFNc and MCP-1 levels were reduced in JNK1 2/2 mice challenged with both stimuli. These data suggest that JNK1 may play a role in macrophage function in host defense. E. coli has been previously shown to activate JNK1 in macrophages. Furthermore, MCP-1 2/2 mice fail to recruit neutrophils during E. coli pneumonia and have increase bacterial burden in the lung. The link between IL-17A and E. coli pneumonia is supported by the findings that LPS activates IL-17A production in the lung and IL-17A 2/2 mice have increased E. coli burden in urinary tract infection. In addition, RIP2 2/2 mice have increased bacterial burden and decreased IL-17A production in the lung. These data suggest that JNK1 may act downstream of IL17A during E. coli pneumonia. The lack of an impact of JNK1 on host defense against gram-positive bacteria has not been previously reported. Peptidoglycan from S. aureus was shown to require JNK1 to drive IL-8 production in lung type II cells, suggesting a role for JNK1. Our data show a defect in macrophage recruitment but little impact on cytokine production. Recent studies concerning JNK1 and Influenza A infection have focused on the ability of virus to inhibit JNK1 and thus alter host cell apoptosis. JNK1 was shown to be inhibited via viral NS1 protein or host PI3K/AKT activity thus blocking apoptosis of infected cells. These data would suggest that in the absence of JNK1, viral burden may be increased due to a lack of apoptosis, however we observed decreased viral burden in JNK1 2/2 mice. MLK3 2/2 mice, a kinase upstream of JNK1, display increased Influenza A burden due to increased epithelial cell survival and viral replication. The reason for the discrepancy with these data and our findings is unclear. Several studies have reported JNK1 activation following Influenza A infection. In these studies Influenza A drove activation of JNK1, downstream AP-1 transcriptional activity, and cytokine production. Our data show that JNK1 delet